Sostieni il nostro blog

Apparato cardiovascolare - Fisiologia

Il ruolo vitale del sistema cardiovascolare nel mantenere l’omeostasi dipende dal movimento contino e controllato del sangue attraverso i milioni di capillari, raggiungendo direttamente o indirettamente tutte le cellule del corpo.
Il sangue deve non solo muoversi all’interno del circuito chiuso dei vasi, sotto la spinta dell’attività cardiaca, ma anche essere diretto e distribuito secondo la necessità dei vari distretti dell’organismo.
I migliaia di capillari provvedono a questa giusta distribuzione.

Numerosi sono i meccanismi che influenzano questo processo



CONDUZIONE
L’attività specifica del muscolo cardiaco è la contrazione, in ciò esso assomiglia a gli altri muscoli solo che il suo sistema di contrazione è più specializzato, proprio perché deve funzionare come una pompa che immette il sangue nei circoli per distribuirlo a tutto l’organismo.

Nodo senoatriale
Consiste in qualche centinaio di cellule localizzate sulla parete atriale destra vicino allo sbocco della vena cava superiore. L’impulso cardiaco che da inizio alla contrazione nasce proprio dal nodo senoatriale. Queste cellule possiedono un ritmo intrinseco che gli permette senza alcuna stimolazione di impulsi nervosi di poter dare l’impulso alla contrazione. Dopo questa prima fase di stimolo l’impulso si propaga attraverso tutti gli atri per poi arrivare al nodo atrioventricolare.

Nodo atrioventricolare
è costituito da un piccolo ammasso di tessuto muscolare cardiaco specializzato, situato nell’atrio destro nella parete inferiore del setto interatriale la sua stimolazione è fortemente rallentata per permettere la fine della contrazione degli atri. Dopo essere passato per questo nodo l’impulso raggiunge il fascio di his.

Fascio atrioventricolare o fascio di His
è un sistema di fibre muscolari che originano dal nodo atrioventricolare e si distribuiscono in due branche, una di destra e una di sinistra fino a raggiungere le fibre di purkinj.

Fibre di purkinje
Dai fasci atrioventricolari nascono e fibre che si estendono fino ai muscoli papillari e alle pareti dei ventricoli.



CIRCOLO CARDIACO

Con l’espressione circolo cardiaco si intendono tutti gli eventi che si verificano durante ogni battito del cuore, che consistono nella contrazione, Sistole, e nel rilasciamento, Diastole, di entrambi gli atri e i ventricoli.
Il cuore non si pompa come un’unica entità ma abbiamo prima la contrazione degli atri e poi quella dei ventricoli. Proprio questa successione permette al cuore di pompare il sangue in tutto il circolo.

Il circolo cardiaco è stato diviso nel suo complesso in un certo numero di intervalli che sono:

Sistole atriale
In questa fase c’è una prima parte in cui gli atri ricevono sangue, man mano che vengono riempiti le valvole atrioventricolari sono aperta sotto la spinta del sangue stesso, mentre le valvole semilunari sono chiuse, permettendo così il riempimento dei ventricoli. Questa fase del ciclo cardiaco equivale all’onda P dell’ECG. Quando il ventricolo e totalmente riempito comincia a contrarsi e le valvole atrioventricolari si chiudono.

Contrazione ventricolare isovolumetrica
Iso è un prefisso che sta ad indicare uguaglianza uniformità. Durante il periodo di contrazione ventricolare isovolumetrica,che si verifica tra l’inizio della sistole e l’apertura delle valvole semilunari, il volume ventricolare rimane costante, mentre la pressione cresce rapidamente, in questo istante le valvole sono tutte chiuse proprio perché in un primo momento la pressione non è abbastanza forte per aprire le valvole semilunari. Questa fase corrisponde all’onda R (del complesso QRS ) dell’ECG,con la comparsa del primo tono cardiaco.

Eiezione
Le valvole semilunari si aprono sotto la pressione del sangue che ha superato la pressione dell’ arteria polmonare e della aorta. Una prima fase chiamata eiezione rapida è caratterizzata da un notevole aumento della pressione ventricolare e aortica e del flusso sanguigno aortico. L’onda T dell’ECG corrisponde all’ultima fase dell’eiezione,definita ridotta (caratterizzata da una leggera diminuzione del volume ventricolare. Una piccola quantità di sangue rimane sempre nei ventricoli chiamato volume residuo.

Rilasciamento ventricolare isovolumetrico
Corrisponde alla diastole ventricolare che è rappresentato dal periodo che intercorre tra la chiusura delle valvole semilunari all’apertura delle valvole atrioventricolari. Al termine dell’eiezione le valvole semilunari,sempre per il concetto di pressione, si richiudono per non far tornare indietro il sangue, le valvole atrioventricolari rimangono chiuse fino a quando la pressione all’interno degli atri non supera quella dei ventricoli in diastole. Si assiste così ad una drastica diminuzione della pressione intraventricolare,entrambi i sistemi valvolari sono chiusi e i ventricoli si stanno rilasciando, il secondo tono cardiaco viene avvertito in questa fase del ciclo cardiaco.

Riempimento ventricolare passivo
Corrisponde alla fase di ritorno del sangue venoso all’interno degli atri, essi aumentando la loro pressione inducendo l’apertura delle valvole atrioventricolari, l’afflusso è molto rapido 0,1 secondi e porta ad un drastico aumento del volume nei ventricoli l’improvviso afflusso di sangue nei ventricoli è seguito da un continuo ma lento scorrimento del sangue dagli atri chiamato diastasi dura circa 0,2 secondi ed è caratterizzata da un aumento della pressione nei ventricoli

Il cuore produce tipici suoni durante il ciclo cardiaco. Il primo tono detto sistolico corrisponde alla contrazione dei ventricoli e alla vibrazione prodotta dalla chiusura delle valvole atrioventricolari, ha una durata minore ed è meno intenso del secondo tono detto diastolico, breve e acuto, causato dalle vibrazioni dovute alla chiusura delle valvole semilunari. I toni cardiaci hanno una notevole importanza dato che danno informazioni circa lo stato delle valvole del cuore.



L’ELETTROGARDIOGRAMMA

La conduzione dell’impulso genera una piccola corrente elettrica nel cuore che,diffusa nei tessuti circostanti può raggiungere la superficie del corpo.
Ciò permette di registrare l’attività del cuore attraverso uno strumento chiamato: elettrocardiogramma,esso è composto da una serie di onde che corrispondono alle fasi di poralizzazione e deporalizzazione del cuore che possono essere lette con delle onde.
L’elettrocardiogramma è formato da un’onda P che rappresenta la deporalizzazione degli atri un complesso QRS che rappresenta la deporalizzazione dei ventricoli e un’onda T che rappresenta la riporalizzazione dei ventricoli.

Onda P
Rappresenta la deporalizzazione degli atri,cioè il passaggio degli impulsi dal nodo senoatriale alla muscolatura degli atri. Dopo questa fase potremmo vedere sul tracciato una piccola pausa.

Complesso QRS
Rappresenta la Deporalizzazone dei ventricoli. Nello stesso momento in cui i ventricoli si deporalizzano gli atri riporalizzano

Onda T
Rappresenta la riporalizzazione dei ventricoli.



PRINCIPI FONDAMENTALI DELLA CIRCOLAZIONE

I fluidi si muovono in risposta ad un gradiente di pressione fra punti diversi del loro percorso

1) Un fluido non può scorrere quando la pressione è la stessa in tutte le sue parti
2) Un fluido scorre solo quando la sua pressione è più elevata in un’area rispetto a un’altra e fluisce sempre dall’area a pressione più elevata verso quella a pressione più bassa. (Legge di Newton)

Il sangue circola dal ventricolo sinistro e ritorna all’atrio destro, grazie all’esistenza di un gradiente di pressione fra queste due strutture. Quando il ventricolo sinistro si contrae spingendo il sangue verso l’aorta è di 120 mmhg quando il ventricolo di sinistra si rilascia, la pressione diminuisce arrivando ad 80 mmHg.

La progressiva diminuzione della pressione,man mano che il sangue fluisce nel torrente circolatorio è direttamente correlata alla resistenza. La resistenza aortica è pari a 0. L’azione di pompa del cuore causa fluttuazioni della resistenza aortica (sistole pari a 120 mmHg diastole pari a 80 mmHg ).

Mentre la pressione media è quasi costante varia solo di 1 o 2 mmHg La maggior caduta di pressione (50 mmHg) si ha nelle arteriole che offrono la maggior resistenza al flusso ematico.



PRESIONE ARTERIOSA

I più importanti fattori che determinano la pressione arteria sono:

GITTATA CARDIACA
La gittata cardiaca è direttamente proporzionale al volume di sangue espulso dai ventricoli ad ogni sistole e alla frequenza cardiaca. Il volume di sangue espulso ad ogni battito cardiaco(volume sistolico) è uno dei principali fattori che determinano la gittata cardiaca, quindi quanto è maggiore la gittata sistolica tanto maggiore sarà la gittata cardiaca.

Ci sono dei fattori che influenzano sia la gittata sistolica sia la frequenza cardiaca:

Fattori che influenzano la gittata sistolica
Possono essere fattori meccanici,nervosi e chimici che regolano la forza della sistole Un fattore meccanico importante sono le fibre del miocardio, maggiore è la quantità di sangue che ritorna al cuore per minuto,più distese saranno le fibre;più forte è la contrazione ventricolare,maggiore è il volume di sangue che il ventricolo espelle ad ogni contrazione (legge di Starling). Tenendo conto della legge di Starling possiamo dire che la gittata sistolica è direttamente proporzionale all’aumento del ritorno venoso.

Due sono i principali fattori che influenzano il ritorno venoso:

Atti respiratori
Ogni volta che il diaframma si contrae,la cavità toracica necessariamente si dilata diminuendo le dimensioni di quella addominale,questo porta alla diminuzione della pressione presente nella cavità toracica (vena cava e arti,mentre quella della cavità addominale e delle vene addominali aumenta. Questo cambiamento presso rio agisce come una pompa respiratoria che consente il fluire del sangue nel torrente circolatorio.

Muscoli scheletrici
La contrazione dei muscoli scheletrici funzione come una pompa che riporta il sangue al cuore, ogni volta che un muscolo si contrae comprime le vene spingendo il sangue verso il cuore
La chiusura delle valvole semilunari lungo il decorso delle vene impedisce al sangue di tornare indietro,quando i muscoli sono rilassati. I lembi valvolari sostengono il sangue per non farlo defluire indietro.
L’effetto netto della contrazione muscolare delle valvole venose è dunque di favorire il flusso di sangue verso il cuore e aumentare il ritorno venoso.


Fattori che influenzano la frequenza cardiaca
Sono diversi i fattori che possono cambiare la frequenza cardiaca,uno dei più importi è rappresentato dal rapporto tra gli impulsi simpatici e parasimpatici che ad ogni minuto vengono condotti al nodo seno atriale. Il sistema cardiovascolare ha a disposizione dei recettori chiamati barocettori sensibili hai cambiamenti di pressione essi inviano fibre nervose afferenti ai centri cardiaci di controllo situati nel bulbo.

Barocettori carotidei
Si trovano nel seno carotideo,una piccola dilatazione che si trova all’inizio della carotide interna localizzato sotto il muscolo sternocleidomastoideo. Questi barocettori attraverso il nervo di Hering e il glossofaringeo si dirigono nel centro di controllo cardiaco,in seguito gli stimoli del parasimpatico raggiungono il nodo SA per mezzo del nervo vago che rilascia acetilcolina che diminuisce la frequenza del nodo SA (inibizione vagale)

Barocettori aortici
Si trovano nella parete dell’arco aortico da li partono delle fibre nervose che prima attraverso il nervo aortico e in seguito attraverso il nervo vago,giungono al centro di controllo cardiaco inducendolo ad aumentare l’inibizione vagale rallentando così il ritmo del cuore riportando la pressione ai normali valori


RESISTENZA PERIFERICA
Si intende per resistenza periferica la forza di attrito del sangue sulle pareti dei vasi che è a sua volta determinata in parte dalla viscosità del sangue e in parte dal piccolo diametro delle ateriole e dei capillari. La resistenza offerta dalle arteriole è la causa di circa la metà della resistenza totale della circolazione sistematica
La tonaca muscolare che riveste le arteriole ha la capacità di contrarsi e rilasciarsi per far passare il sangue,questo può variare la resistenza periferica al flusso sanguigno. Maggiore è la resistenza minore sarà l’afflusso nelle arteriole e quindi maggiore sarà il sangue che rimane nelle arterie che porta ad un aumento della pressione sanguigna.
In un’area del bulbo,chiamata centro vasomotorio,prende origine,se stimolato,un impulso che, attraverso le fibre simpatiche,giunge fino alla muscolatura liscia dei vasi inducendo la loro contrazione,in questo modo il centro vasomotorio svolge sia la funzione di regolatore della pressione sia quella di distribuzione del sangue nei vasi.
Un improvviso aumento della pressione sanguigna arteriosa stimola i barocettori aortici e carotidei da qui parte una stimolazione dei centri vasocostrittori e cardioinibitori. Una maggior quantità di impulsi per secondo raggiunge il cuore lungo le fibre vagali che fanno rallentare il ritmo del cuore mentre arteriole e venule si dilatano per il passaggio di sangue.
Il contrario avviene se c’è una diminuzione della pressione arteriosa,i barocettori inviano maggiori impulsi ai centri vasocostrittori del bulbo,stimolandoli essi a loro volta mandano impulsi lungo le fibre nervose dei muscoli lisci dei vasi e inducono vasocostrizione. Ciò provoca una fuoriuscita di maggiore quantità di sangue dai vasi di riserva,con aumento del ritorno venoso al cuore.
I Chemiocettori vasomotori localizzati nei glomi aortici e carotidei sono particolarmente sensibili a un eccesso di concentrazione di anidride carbonica nel sangue,mentre sono meno sensibili a diminuzione dell’ossigeno e del ph del sangue arterioso.
Quando si verifica una di queste condizioni vengono stimolati i chemiocettori e le loro fibre mandano dei segnali ai centri vasocostrittori del bulbo,con conseguente vasocostrizione delle arteriole e dei sistemi venosi di riserva.(la vasocostrizione è attuata per il fatto che il cuore è stimolato ad aumentare la frequenza cardiaca) Questo sistema agisce come emergenza quando si verifica una grave ipossia.
Abbiamo poi il meccanismo di riflesso ischemico bulbare quando la quantità di sangue che raggiunge il cervello diventa inadeguata i neuroni entrano in uno stato di sofferenza,stimolando intensamente e direttamente i centri vasocostrittori dando luogo ad una marcata costrizione delle arteriole e delle vene.


VOLUME DI SANGUE CIRCOLANTE
Più aumenta il volume del sangue più sarà il sangue che ritorna al cuore.
La maggior parte dei meccanismi che apportano variazioni del volume plasmatico agiscono modificando la ritenzione di acqua nell’organismo
Secondo il principio di Starling, diversi fattori controllano il movimento dei fluidi e dei soluti nei due sensi attraverso i capillari sanguigni.
Questi fattori includono forze dirette verso l’esterno e verso l’interno, ed è proprio l’equilibrio tra queste due forze che determina lo spostamento di un fluido,è la pressione osmotica che tende a promuovere la diffusione di liquido verso l’interno.
All’estremità arteriosa di un vaso la pressione sanguigna diretta all’esterno è maggiore rispetto a quella osmotica diretta all’interno così per equilibrio il liquido fuoriesce dai vasi permettendo cosi gli scambi di materiali nel liquido interstiziale. All’estremità venosa di un capillare la pressione osmotica aumenta rispetto a quella idrostatica permettendo ai liquidi di rientrare. Circa il 90% dei liquidi che lascia il capillare all’estremità arteriosa viene recuperato in quella venosa. Il 10% restante verrà filtrato dai capillari linfatici per poi essere versato nel torrente venoso.

Ci sono tre meccanismi che influenzano il volume totale del sangue:

Meccanismo dell’ormone antidiuretico (adh)
L’ADH viene rilasciato dalla neuroipofisi e agisce sul rene in modo da ridurre la quantità di acqua eliminata dall’organismo. L’ADH agisce aumentando la quantità di acqua che i reni riassorbono dalla preurina prima che venga escreta come urina definita dal corpo. Più ADH viene secreto,più acqua verrà riassorbita dal sangue, maggiore diventerà il volume plasmatico.

Sistema renina-angiotensina-aldosterone
La renina innesca una serie di eventi che portano alla secrezione

Ormone natiuretico atriale (ANH)
Tale ormone viene secreto da cellule specializzate in risposta ad un eccessivo stiramento delle pareti atriali (si ricorda che questo ormone viene prodotto da cellule specializzate che si trovano negli atri) Il sovraccarico delle cavità atriali si verifica quando il ritorno venoso è eccessivo. L’ANH permette la perdita di sangue dal plasma,promuovendo la diminuzione della volemia del sangue. L’ANH permette la perdita di sodio nelle urine,inducendo un aumento della diuresi per osmosi



Nessun commento:

Visitatori

Seguimi su Libero Mobile

Canale Video di PocketStudy